

Guidelines for Mapping Presentation and Analysis

® CERCARBONO No part of this document may be reproduced or used in any form or by any means, electronic or mechanical, including scanning, photocopying, and microfilming, without the permission of Cercarbono. All rights reserved.

Contents

Index of tables	3
Index of figures	
Acronyms and abbreviations	4
Terms and definitions	5
1 Introduction	-
2 Scope	
3 Mapping presentation	
3.1 Historical record for mapping	
3.2 Location data for programs and projects	8
3.2.1 Area location	8
3.2.2 Location data for commercial or industrial facilities or process units	9
3.3 Coordinate reference system	9
3.3.1 Projected coordinate system	10
3.4 Format for mapping presentation	13
3.5 Quality of mapping	14
3.5.1 Information sources	15
3.5.2 Minimum mapping area unit	15
3.5.3 Mapping scale	15
3.5.4 Spatial resolution	15
3.6 Mapping information filling out	16
4 Cartography analysis	17
4.1 Mapping quality assessment	17
4.2 Mapping spatial and temporal assessment	17
4.3 Overlap assessment	18
4.3.1 Systematized identification of overlaps	19
4.3.2 Confirmation of identified overlaps	
4.3.3 Resolution of overlaps identified in the certification cycle	23
5 Validity and transitional regime	
6 References	
7 Document history	26

Index of tables

Table 1. Globally available planar coordinate systems	10
Table 2. Scale and area mapping covered.	15

Index of figures

Figure 1. Mapping presentation and analysis.	7
Figure 2. Distribution of program and project areas	9
Figure 3. Representation of coordinate reference systems: A. Planar coordinate system. B.	
Geographic coordinate system1	0
Figure 4. UTM coordinate system1	2
Figure 5. SIRGAS coordinate system in America1	3
Figure 6. Form available at EcoRegistry for mapping presentation	6
Figure 7. Spatial (A) or temporal (B) overlap between programs or projects1	8
Figure 8. Visual assessment of possible overlaps. Figures A and B correspond to programs	
or projects without overlapping areas. Figure C, partial overlap between program/project	
areas and Figure D total area overlap of program and/or project	0
Figure 9. Assessment of overlapping areas using the "Intersect" tool available in ArcGIS	
Pro [®] 2	1
Figure 10. Generation of the area estimate for the overlap polygon	2

Acronyms and abbreviations

AGD	Australian Geodetic Datum
CGRS	Constrained Gauss Reference System
CRS	Coordinate Reference System
ETRS	European Terrestrial Reference System
FCCB	Fondo Cooperativo para el Carbono de los Bosques
FREL	Forest Reference Emission Level
GCF	Green Climate Fund
GCS	Geographic Coordinate System
GHG	Greenhouse gases
GIS	Geographic Information Systems
GPS PDD REDD+ REM SIRGAS SPCS UNFCCC UTM VVB	Geographic Positioning System Project Description Document Reduction of Emissions from Deforestation and Forest Degradation and other actions in this sector REDD Early Movers Geodetic Reference System for the Americas State Plane Coordinate System United Nations Framework Convention on Climate Change Universal Transverse Mercator Validation and Verification Body

Terms and definitions

The terms and definitions contained in the document **Terms and Definitions of the Voluntary Certification Programme of Cercarbono**, available at <u>www.cercarbono.com</u>, section: Documentation. For the purposes of this guidelines in particular, the following terms apply:

- Area: land extension or surface where a program or project is developed.
- Coordinate reference system: coordinate system referred to the earth's surface through a geodetic datum using one or more numbers (coordinates) to uniquely determining an object's position.
- Dataset: geospatial data group as small as a single property or property attribute contained within a larger dataset, existing in the mapping of programs or projects.
- **Dron:** device that allows imaging of different types of land and land coverage that facilitates the assessment and monitoring of activities performed in the land use sector.
- Geographic coordinate system: system based on a reference spheroid such as the Earth, uses latitude and longitude to identify a certain point's position. Latitude is measured in degrees north or south of the equator, while longitude is measured in degrees east or west of the Greenwich meridian; units are normally expressed in terms of degrees, minutes, and seconds.
- Geographic datum: location-implicit/explicit information, related to the earth's surface within the mapping registered in Cercarbono.
- Global Positioning System: United States of America radio navigation system that provides reliable positioning, navigation, and timing services with free, uninterrupted access to civilian users worldwide. The system consists of satellites, ground stations and receivers. The area location and calculation of a given place is generated through a receiver that can have an accuracy range of millimeters to meters.
- Mapping: graphical representation of the surface or area where a program or project is developed.
- Mapping record: catalog of geospatial data sets which includes information on their origin, content, quality, and other relevant metadata. This record can be used to manage and access the geospatial data sets used for the mapping of programs or projects.
- Multi-polygon: cartographic representation allowing modeling of geographical areas with complex boundaries and of internal structures, by grouping individual polygons present in programs or projects.
- **Overlap:** intersection of the areas included in a program or project registered in Cercarbono with another(s) registered in either Cercarbono or other standards.
- Orthophoto: high-resolution aerial or satellite photography geographically corrected to eliminate the effects of terrain relief and camera tilt, allowing accurate measurements of parameters such as distances and areas.
- Polygon: plane, flat, two-dimensional and closed geometric figure representing geographic areas on maps related to programs or projects; it displays associated attributes describing specific features of the represented area, such as surface or perimeter, among others.

1 Introduction

Mapping is a valuable tool that visually identifies the areas where programs or projects registered with Cercarbono are located. Its submission is an essential requirement of the certification process, emphasized in both Cercarbono's regulatory and technical framework and the methodologies selected by them.

Standardizing the presentation of these maps is necessary to facilitate individualized and comparative analysis during the certification cycle, ensuring compliance with Cercarbono's principles, including no double accounting, integrity, and transparency.

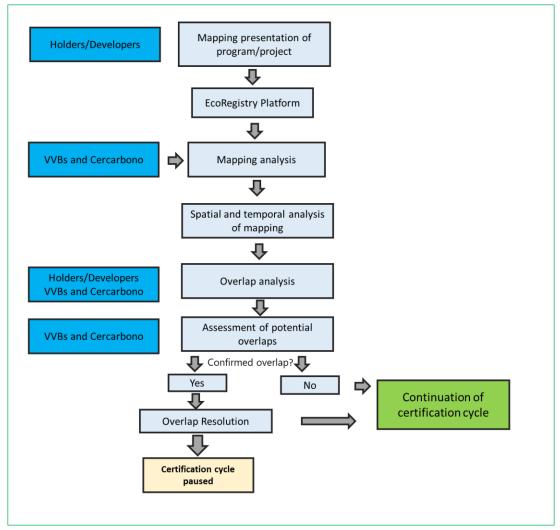
Precisely identifying the spatial limits of each program or project serves multiple purposes, such as providing clarity on the geographical scope where the activities' results will occur and identifying and assessing overlaps. This identification and assessment provide quantitative elements to aid in their resolution.

The aim of these guidelines is to standardize mapping information for programs and projects registered with Cercarbono. This standardization supports transparency in their actions within spatial and temporal contexts, benefiting stakeholders involved in the certification process and society at large

2 Scope

The application of these guidelines is mandatory for all programs or projects registered with Cercarbono, particularly those related to land use, including biodiversity conservation.

These guidelines aim to provide guidance to program and project holders, developers, and Validation and Verification Bodies (VVBs) in preparing, presenting, and analyzing mapping information.


The scope of programs and projects includes.

- GHG removal.
- GHG emissions reduction.
- Materials' reduction and recirculation.
- Conservation of biodiversity.
- Other activities requiring mapping information.

The key elements of these guidelines, along with their respective responsible parties, are illustrated in *Figure 1*.

Figure 1.	Mapping	presentation	and	analysis.
1.9010 11	11 Mapping	presentation	ana	anarysis.

3 Mapping presentation

Holders and developers shall ensure that the areas established in the programs and projects registered with Cercarbono are identifiable, comparable, and measurable. Likewise, they shall independently verify that these areas are not a part of other initiatives with the same scope as that of the methodology(s) selected for their implementation. Furthermore, they must ensure areas' compatibility according to the type of activity to be carried out, to avoid incurring in double counting events or situations of incompatible spatial or temporal area or facilities overlap¹.

¹ There are instances where the very nature of the mapping information (e.g., a point at which a facility is defined) causes several activities in that facility to be defined with the same geographic reference, which does not necessarily implies an overlap. In other situations, such as those in which leaks are monitored, overlaps of their reference areas would not present an incompatibility between projects sharing them.

Sections 3.1 to 3.5 outline the elements that holders and developers of programs or projects registered with Cercarbono shall consider for their mapping presentation. *Section 3.6* describes the form designed for such purpose.

3.1 Historical record for mapping

Programs or projects shall record the historical reference (day.month.year)² of the mappings presented at different stages of the certification cycle, especially when they are modified due to change requests or revisions in the validation, verification, or certification stages.

3.2 Location data for programs and projects

It refers to the geographical representation of the surface, facility, or process unit where the activities of programs or projects registered in Cercarbono are carried out.

3.2.1 Area location

Programs and projects that are not implemented within a specific commercial or industrial building, facility or process unit shall describe its total area(s) in its mapping presentation.

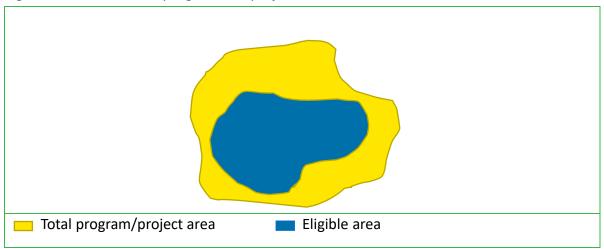
Programs and projects requiring a geographical description of their area representation, particularly those in the land use sector (including biodiversity-focused initiatives), shall include, at a minimum, the total and eligible areas measured in hectares (*Figure 2*).

These programs or projects shall submit their mapping in the format established in *Section* **3.4** by uploading it to EcoRegistry, as indicated in *Section* **3.6**.

• Total project area

This area encompasses the total area of a given program or project, including eligible and ineligible areas (which also include, where applicable, leakage monitoring areas considered by some programs or projects in the land use sector). Therefore, holders and developers shall generate the cartographic survey and present it as one or more polygons, in which those areas are clearly identified.

• Eligible area


It is the land surface, where the program or project certifiable activities are carried out. Such areas shall comply with the following:

- Clearly established geospatial boundaries.
- Compliance with criteria established as per in selected methodologies.

 $^{^2}$ Both that for the mapping generation and the one corresponding to its registration in EcoRegistry platform, as established in *Section 3.6*.

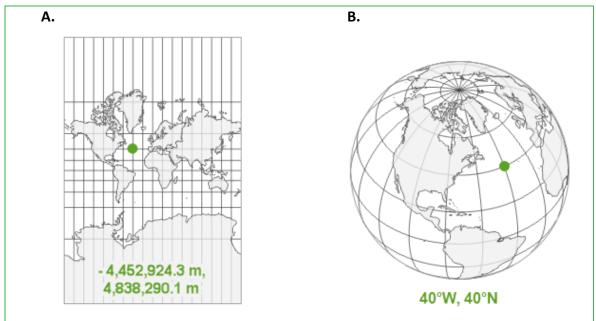
Figure 2. Distribution of program and project areas.

• Non-eligible area

It is the land area that does not meet the eligibility criteria; this area is part of the total area of the program or project. It is not necessary to represent this area in the mapping, since its existence within it is implicit when identifying and representing the total area and the eligible areas, established in line with the selected methodology(s), being clearly delimited and defined by difference between the two.

3.2.2 Location data for commercial or industrial facilities or process units

Programs and projects whose activity is carried out exclusively in buildings, industrial facilities or process units, may present their location (coordinates) as a fixed point in the geography in the forms established in *Section 3.4* and their upload shall be made into EcoRegistry as indicated in *Section 3.6*.


3.3 Coordinate reference system

Coordinate Reference Systems (CRS) allow any point on the earth's surface to be defined primarily as coordinates (latitude and longitude values). They are divided into projected/planar and geographic coordinate reference systems (*Figure 3*).

Programs and projects registered in Cercarbono shall use the projected/ planar coordinate reference system in their mapping.

Figure 3. Representation of coordinate reference systems: A. Planar coordinate system. B. Geographic coordinate system.

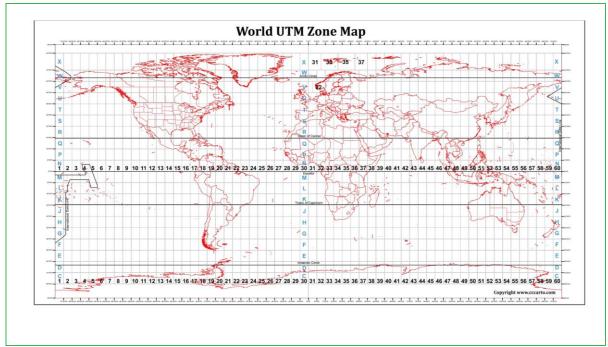
Source: Image adapted from Esri, 2023.

3.3.1 Projected coordinate system

Projected (or planar) coordinate systems are used to represent the Earth's curvature on a two-dimensional plane, allowing for a more accurate representation of distances and areas. These coordinate systems (see *Table 1*) are based on a specific mapping projection, which is a mathematical transformation of the Earth's spherical surface to a plane (Morales, 2024).

Region	Coordinate Reference System	Countries	
Globally	UTM (Universal Transverse Mercator) All countries.		
	Albers Equal Area Conic Egypt and some Norther regions.		
	Lambert Conformal Conic	Morocco and Tunisia.	
Africa	Gauss-Krüger	South Africa and Angola.	
	Plane Rectangular Coordinate System	South Africa, Keny, and Nigeria.	
	Cassini-Soldner	Algeria, Tunisia, and Morocco.	
AmericaVersions for each country of origin within SIRGAS (Geocentric Reference System for the Americas) frameworkAll American continer		All American continent countries.	

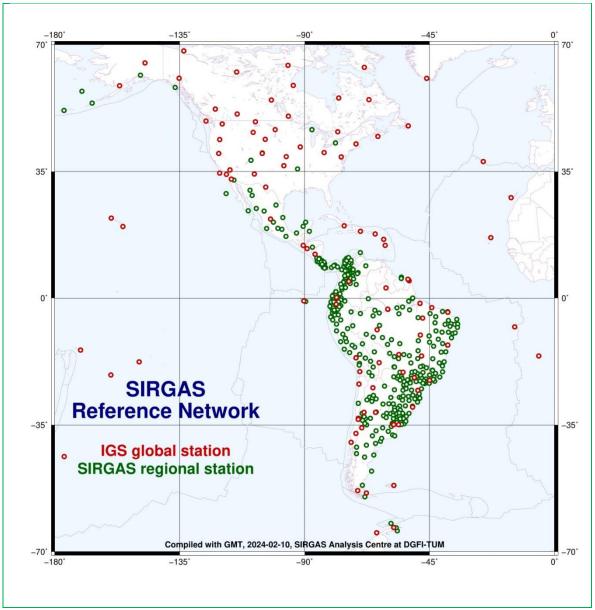
Table 1. Available	planar coordinate s	ystems.
--------------------	---------------------	---------


Region	Coordinate Reference System	Countries		
	Gauss-Krüger	Argentina, Bolivia, Brazil, Chile, Colombia, Ecuador, Guyana, Paraguay, Peru, Suriname, Uruguay, and Venezuela.		
	State Plane Coordinate System (SPCS)	United States.		
	CGRS (Constrained Gauss Reference System)	Brazil.		
	Plane Rectangular Coordinate System	Japan, South Korea, Singapore, Taiwan, China, Indonesia, Malaysia, Thailand, among others.		
Asia	Gauss-Krüger Coordinate System	China, India, Russia, and South Korea.		
	Local Coordinate System	Japan, South Korea, and Singapore.		
	Versions for each country of origin within the European Terrestrial Reference System (ETRS) framework	Germany, France, Spain, Italy, United Kingdom, Sweden, Norway, among others.		
Europe	Gauss-Krüger Coordinate System	Germany, France, Spain, Italy, United Kingdom, Sweden, Norway, among others.		
	Lambert Conic Conformal Projection	France, Belgium, Luxembourg, Netherlands, Spain, among others.		
Oceania	Australian Geodetic Datum (AGD)	Australia, New Zealand, Papua New Guinea, and Pacific Islands.		
	Plane Rectangular Coordinate System	Australia, New Zealand, Papua New Guinea, Fiji, and Vanuatu.		

Source: Independent research by Cercarbono.

Internationally, the UTM (*Universal Transverse Mercator*) coordinate system is used to reference any point on the Earth's surface, employing a particular type of cylindrical projection that represents the Earth on a grid-based plane. The UTM system divides the earth into 60 spindles of 6 degrees in length that complete its 360 degrees. The spindles are listed in ascending order toward the East (*Figure 4*).

Figure 4. UTM coordinate system.


Source: Mavink, 2024.

For countries located in Europe, Russia, and China, in addition to the UTM, they mainly use the *Gauss-Krüger* coordinate system, featuring zones of 3 and 6 degrees wide, which differs from the UTM in some of its parameters such as the scale factor and sometimes the false East.

Meanwhile, for countries located in the three regions of America (North America, Central America, and South America), since 2001 and following the recommendation of the 7th United Nations Cartographic Conference for the Americas, it was established to adopt the Geodetic Reference System for the Americas (SIRGAS) as a reference system. Although this system implements a geocentric system, it is used to generate the flat projections of the reference systems in countries of the regions of the Americas, such as "SIRGAS 2000 Brasil Mercator" or "MAGNASIRGAS/Origen-Nacional", among others (*Figure 5*).

Fuente: SIRGAS, 2024.

Based on the above descriptions, holders and developers shall select and specify the planar coordinate system used in the mapping of the program or project registered in Cercarbono, either selecting the UTM system (specifying the area in which the cartography is based), or the one officially adopted by the country where the program or project is located, as in the different countries of America adopting the SIRGAS coordinate system.

3.4 Format for mapping presentation

The mapping of programs and projects for the land use sector and other sectors requiring demonstration that their activities are carried out in specific areas shall be submitted in

*shapefile*³ format (.shp)⁴ with their auxiliary files under projected/planar coordinates, as set out in *Section 3.6*. These files shall be integrated as a compressed folder in Zip format (.zip), then uploaded into EcoRegistry.

For programs or projects implementing activities exclusively in buildings, industrial facilities, or process units (*Section 3.2.2*), their location data shall be uploaded into EcoRegistry, preferably in Shapefile format (.shp)⁵.

3.5 Quality of mapping

The mapping information submitted by the holders or developers of programs and projects shall consider the following guidelines specified in ISO 19157-1:2023 Standard:

- Understand and incorporate the concepts of mapping data's quality and measurement. Establishing the foundations needed to define and understand the factors that influence the quality of geospatial data, such as positional accuracy, thematic accuracy, and temporal accuracy. By understanding these factors and their implications, practitioners can develop effective strategies to measure and improve the quality of geographic data in their projects and applications.
- Define data quality conformance levels in the data product specifications. This involves
 establishing the criteria and metrics that will be used to assess the quality of the data
 and determine whether they meet the requirements set forth for the geospatial data in
 terms of positional accuracy, thematic accuracy, completeness, consistency, and other
 quality factors identified in the standard.
- Specify quality aspects in application schemas. This may include specific quality criteria that geospatial data shall comply with to meet the needs of the project or organization, as well as procedures for assessing and ensuring data quality throughout the data lifecycle.
- Evaluate and report on data quality. To do this, GIS experts should systematically assess by following the steps below:
 - Establish quality criteria.
 - Select assessment methods.
 - Collect quality data.
 - Perform quality analysis.
 - Generate the quality report.
 - Present the findings.

Compliance with mapping quality shall be highlighted in the Project Description Document (PDD).

³ Geospatial vector data format used in *geographic information systems (GIS)* software.

⁴ This type of format has been selected among others, due to the fact it supports a wide range of advanced functionalities and capabilities in GIS software, as well as for its robust structure to store attributive data associated with geospatial features in a reliable and accurate way.

⁵ For this type of programs or projects, submission of location data in KML format is also accepted.

3.5.1 Information sources

Mappings may use as sources of information: remote sensing, orthophotos, or land use planning tools developed by institutions in charge of official mapping in the country where the program or project is implemented, which shall be of medium or high spatial resolution. Mapping using drones or using the Global Positioning System (GPS) is also allowed, provided its quality is appropriate and proportionate to the scale of the program or project as specified in *Section 3.5.3*.

3.5.2 Minimum mapping area unit

It is understood as the minimum unit of interpretation of cartographic sources, corresponding to the scale of work used (*Section 3.5.3*). It shall be equal to the minimum unit established in the context in which the program or project is developed, according to the selected methodology or applicable guidelines, such as those established by some countries in their "forest" definition.

3.5.3 Mapping scale

The holder or developer shall ensure that the mapping scale is proportional to the area of the program or project, allowing for its adequate analysis, following the guidelines set out in *Table 2*.

Scale	Scale Type	Land distance equivalent to 1 cm on the map	Maximum area covered (ha)
1:500		5 m	14.648
1:1000	Alta	10 m	58.594
1:2000		20 m	234.375
1:5000		50 m	937.500
1:10000	Media	100 m	3.750.000
1:25000		250 m	15.000.000
1:50000	Paia	500 m	60.000.000
1:100000	Baja	1000 m	240.000.000

Table 2. Mapping scale and covered area.

3.5.4 Spatial resolution

Programs or projects with areas larger than one hectare may use high scale and mediumlow resolution satellite images (see *Table 2*), depending on the sensor consulted (e.g., images taken from sensors in the Landsat constellation).

Meanwhile, programs or projects (especially grouped ones) featuring polygons with areas less than one hectare shall use images captured by unmanned vehicles (drones) which ensure a high resolution of such areas with pixels smaller than 10 cm.

The following describes the spatial resolutions allowed by Cercarbono:

- Medium-low spatial resolution: information with a spatial resolution of 10 m to 30 m, which allows the definition of working scales of less than 1:50,000, from spectral sensitivity systems or satellite images such as Sentinell, Landsat, SPOT, ALOS, AVNIR-2, ASTER and IRSS.
- **High spatial resolution:** information with a spatial resolution of less than 5 m, which allows the definition of working scales greater than 1:50,000, from spectral sensitivity systems, satellite, or aerial images such as RapidEye, orthophotos and LiDar.

3.6 Mapping information filling out

The information required for the correct analysis of the cartography present in the program or project shall be filled out and uploaded into EcoRegistry by the holder or developer of the program or project registered in Cercarbono, according to the certification cycle stage of the requiring it.

For this procedure, a form with related directions will be displayed in EcoRegistry, as per in *Figure 6*.

CERCARBONO Certified Carbon Standard								
Form for the s	ubmission of n	napping to	Cercarbon	o by a progr	ama or proje	ect		
Date uploaded into EcoRegistry	Mapping creation date	File	Country	Location	Total project area (ha) (As applicable)	Eligible project area (ha) (As applicable)	Coordinate system	Comments

Figure 6. Form available at EcoRegistry for mapping presentation.

4 Cartography analysis

4.1 Mapping quality assessment

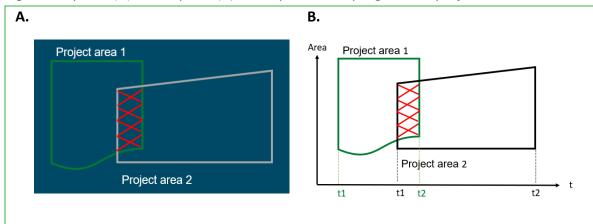
Once the holders and developers of programs or projects registered with Cercarbono have submitted their mapping, it shall be audited during the validation and verification events as well as subsequently reviewed in the certification process, assessing:

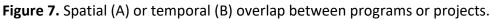
- The coordinate system used in the mapping of the areas, which shall follow a flat/projected coordinate system as specified above.
- The polygon(s), including the specific point or total area and eligible areas (as applicable) of the program or project⁶. They can be set by layers or multi-polygons.
- The specific location point or total eligible area (where applicable), against information supported in the Project Description Document (PDD) of each program or project.
- That mapping is considered only for the scope of activity established in a given program or project (especially in the land use sector). This point is further explained below.

4.2 Mapping spatial and temporal assessment

In the validation and verification processes, the areas included in each program or project shall be subjected to analysis/review to ensure they are not in an overlap situation, especially for programs or projects in the land use sector; to this end, following actions shall be carried out as a minimum:

- Review the cartographies of the programs and projects registered in Cercarbono (EcoRegistry platform), with overlap potential according to the subject project or program location.
- Consult national registry(ies) of environmental initiatives in the country in which the program or project is being developed (as available). This information shall be included in the validation or verification report (including an access link).
- Consult information repositories on national or subnational environmental programs in the country where the programs or projects are implemented.
- Consult the records of other standards supporting activities related to the subject program or project activity.
- Consult REDD+ programs or projects in the information repository of FRELs submitted to UNFCCC or the results-based payment programs of the Forest Carbon Partnership Facility (FCCB), Biocarbon Fund, REDD Early Movers (EMR) Program, GCF (Green Climate Fund) and on the pages reporting on climate action of the governments of Germany, Norway, and the United Kingdom, among others.
- Consult the Ecosystem Market Place project database.


⁶ For REDD+ programs or projects, verify that they are aligned with the Forest Reference Emission Level (FREL) of the country in which it is implemented, and that the ecological divisions established therein (such as biomes, ecotypes, among others) are considered.


4.3 Overlap assessment

During the validation, verification, and certification processes, an overlap analysis shall be conducted following the general review of the cartography. This analysis serves to:

- Prevent or detect double counting events.
- Identify potential area intersections involving different programs or projects.
- Identify potential temporal intersections between different programs or projects.
- Ensure transparency in the validation, verification, and certification processes.

The overlap of a program or project registered in Cercarbono with another(s) registered either in Cercarbono or in other standards can be of following types: spatial or temporal (*Figure 7*).

• Spatial overlap

It occurs when two or more programs or projects have a partial or total overlapping common area.

• Temporal overlap

It occurs when two or more programs or projects, in addition to a spatial overlap, present an overlap in the registration period before a standard and/or in the Crediting period granted by the standard.

If there is an overlap, it should be considered they could be:

- **Compatible:** simultaneous overlapping of the "partial or total" area, where two or more programs or projects can coexist, provided the activities and final results are different from each other. Therefore, mainly the spatial overlap is reviewed and analyzed.
- **Non-compatible:** simultaneous overlapping of the "partial or total" area, the registration or crediting period, and the activity of the programs or projects. Therefore, two or more programmes or projects cannot coexist, considering the above characteristics. Therefore, spatial and temporal overlaps are reviewed and analyzed.

4.3.1 Systematized identification of overlaps

In the formulation, validation, verification, and certification processes, for the identification of possible overlaps between two or more programs or projects, the holders/developers, VBBs and Cercarbono may use and combine various ways of doing so, either using available automated tools such as the one developed by EcoRegistry or using their own internal procedures to identify them.

EcoRegistry's GeoCarbon tool is available to holders/developers and VVBs authorized by Cercarbono, which allows identifying whether there are possible geographic overlap situations, generating an automated report on the program or project under analysis.

4.3.2 Confirmation of identified overlaps

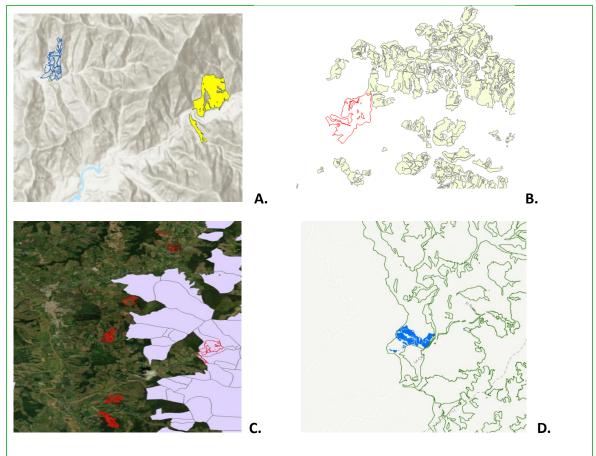
In the validation, verification, and certification processes, once potential overlaps have been identified, either using automated tools or by means of internal procedures, the cartography is analyzed to either corroborate the overlap or clarify the subject areas are not in an overlap situation, as follows:

4.3.2.1 Compilation and homogenization of cartography with possible overlaps

Cartographies of each of the programs or projects with potential overlapping are compiled to be analyzed using Geographic Information Systems (GIS) *specialized software*.

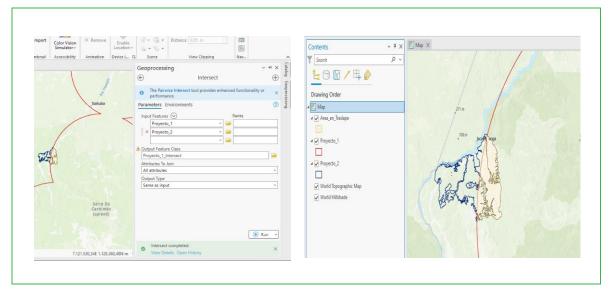
To ensure cartography homogeneity, it should be checked all mappings share the same coordinate systems. Otherwise, they will be projected into a single type of planar coordinate system. The planar coordinate system selected will depend on the country in which the program or project is developed as set out in *Section 3.3.1*.

For this step of the overlap analysis, specialized GIS software shall be used, in the case of Cercarbono, ArcGIS pro[®]. There are other software packages that provide the same type of geographic information analysis, the selection of which will depend on technical considerations of the organization performing the overlap analysis.


4.3.2.2 Analysis of possible overlapping areas

Once the cartography of the programs or projects with possible overlap has been compiled and homogenized, as applicable, following steps shall be carried out:

1) Visual assessment of the areas comprised in the programs or projects with possible overlap to identify if their areas are overlapping (see *Figure 8*).


Figure 8. Visual assessment of possible overlaps. Figures A and B correspond to programs or projects without overlapping areas. Figure C, partial overlap between program/project areas and Figure D total area overlap of program and/or project.

2) Analysis of areas using the GIS tool, once it has been visually identified that areas of the programs or projects are overlapping. This is performed to calculate geometric intersections between the polygons that make up the areas of the programs or projects; Cercarbono implements the "Intersect" tool available in ArcGIS Pro[®] software, which creates a polygon with the overlapping areas (see *Figure 9*).

Figure 9. Assessment of overlapping areas using the "Intersect" tool available in ArcGIS Pro[®].

- 3) Once the polygon with the overlapping areas has been created, an estimate of the area present in the overlap polygon is generated (see *Figure 10*), using this general process:
 - a) Open the polygon attribute table.
 - b) Create a specific column for the polygon areas to verify the units in the polygon are hectares.
 - c) Calculate the area of the polygon using the "Calculate Geometry" tool.
 - d) Finally, the total area of the polygon is calculated using the "Statistics" tool.

Figure 10. Generation of the area estimate for the overlap polygon.

4.3.2.3 Overlapping areas report

Once the assessment on potential overlapping areas between two or more programs or projects has been performed, a report is generated, concluding if there is any overlap.

In the validation or verification process, this report shall be delivered to the program or project by means of a request (either a clarification- or a corrective request), which shall be included and shall appear as resolved in the final validation or verification report.

In the certification process, the final report is sent to the program or project holder, developer or VVB, attached to the corresponding change request through the EcoRegistry platform.

4.3.3 Resolution of overlaps identified in the certification cycle

Once the overlapping areas in the programs or projects registered with Cercarbono have been identified, it is necessary to consider in which certification cycle stage they are:

• At the registration and certification stages:

Cercarbono, through EcoRegistry platform, will send the final reports on potential overlaps identified to the holders/developers of programs or projects that are in these stages, which shall review the eligibility criteria of the selected methodology and shall perform pertinent adjustments.

The holders/developers shall make independent or Cercarbono-mediated (per parties request only), approaches with the holders/developers of involved programs or projects either those registered in Cercarbono or those registered in other standards for the resolution of the overlap situation.

If the programs or projects do not reach a consensus, they should refer the matter to the competent authorities to settle the differences or put the situation on hold, in which case the certification cycle of the program or project in an overlapping situation will be paused until a voluntary or legal resolution is reached.

Additionally, following steps shall be followed according to the particular scenario:

• If there is a compatible overlap:

The holder/developer in these stages shall demonstrate that the activities to be developed in the areas have a different scope than those for the program/project already registered or implemented either in Cercarbono or in other standards.

• If there is a non-compatible overlap:

The holder/developer at these stages shall assess/remove the overlapping areas considering:

 If the registration and crediting periods for the overlapping projects or programs are the same, an analysis should be carried out on the ownership of the property and its

participation in the program or project activity. The holder is the one who chooses in which program or project he//she/it will participate, eliminating the areas of the program or project that do not have his//her/its endorsement.

- If the registration and crediting periods are different, the first program or project registered in the national registration system of the country (if any) where the program or project is or will be implemented will be supported. Subsequently, and supplementary to this, the first program or project registered or certified by Cercarbono⁷ or another standard will be supported.
- If the program or project has generated carbon credits, Cercarbono will activate the procedures corresponding to *post-certification* adjustments or facts discovered after certification established in its regulatory framework. Such credits will continue to be considered valid until otherwise determined, however, they may be blocked preventatively (if available) until the overlapping situation is resolved.

• At the validation and verification stages:

It will be directly the VVBs who shall generate the identified overlap reports and make the respective requests to each program or project.

5 Validity and transitional regime

This document enters into force on the day of its publication, and in case of discrepancy, it prevails over any provision that may be found in other Cercarbono normative documents, with respect to the topics herein included.

The guidelines expressed herein apply to programs or projects registered with Cercarbono, considering:

- Its full adoption of new programs or projects registered with Cercarbono at the time of publication.
- For projects and programs already registered, the cartography will be updated in line with this guide at each new verification event.

⁷ As it complies with the guidelines as per in the certification cycle established in Cercarbono's protocol.

6 References

Esri. (2023). *Sistemas de coordenadas, proyecciones y transformaciones*. Available at: <u>kutt.it/P5hGgW</u>.

ISO 19157:2013. Geographic Information - Data Quality. Available at: onx.la/19f90.

Mavink. (2024). Map Of Utm Zones. Available at: onx.la/45fd7.

Ministerio de Ambiente y Desarrollo Sostenible. (2023). *Glosario*. Available at: kutt.it/WgART6.

Morales, A. (2024). *Diferencias entre los sistemas de coordenadas geográficas y proyectadas*. Available at: <u>kutt.it/PNN7mm</u>.

SIRGAS (2024). SIRGAS. Available at: onx.la/9a497.

7 Document history

Version	Date	Comments or changes
1.0	21.03.2024	Initial version.